Technology Mapping for Low Leakage Power and High Speed with Hot- Carrier Effect Consideration1
نویسندگان
چکیده
1 This research was supported in part by DARPA PAC/C program under contract DAAB07-02-C-P302 and by NSF under grant no. 9988441. ABSTRACT Leakage power and hot-carrier effects are emerging as key concerns in deep sub-micron CMOS technologies with respect to their effects on the total power dissipation and reliability of VLSI circuits. Leakage power dissipation is rapidly becoming a substantial contributor to the total power dissipation as threshold voltage becomes small. Similarly, the hot-carrier effect is one of the most significant failure mechanisms in high-density VLSI circuits. In this paper, a technology mapping technique is presented for use in reducing the leakage power dissipation of the circuit by utilizing a dual-threshold voltage cell library and for minimizing the aged delay of the circuit by considering the effect of hot carriers on the cell speeds as the circuit ages. In addition, this paper presents two methods to reduce delay during technology mapping: primary output ordering and pin permutation. Experimental results show that the total power dissipation and leakage power dissipation can be reduced by up to 27% and 52% as a result of the leakage-aware technology mapping and that the circuit aging phenomenon can be reduced by up to 10.6% as a result of hot-carrier-aware technology mapping. Delay was also reduced by up to 13% by using primary output ordering and pin permutation.
منابع مشابه
A Leakage-aware Low Power Technology Mapping Algorithm Considering the Hot-Carrier Effect
1 A preliminary version of this work has appeared in Proceedings of ASP-DAC 2003. ABSTRACT Leakage power and hot-carrier effects are emerging as key concerns in deep sub-micron CMOS technologies with respect to their effects on the total power dissipation and reliability of VLSI circuits. Leakage power dissipation is rapidly becoming a substantial contributor to the total power dissipation as t...
متن کاملCMOS Low Power Cell Library For Digital Design
Historically, VLSI designers have focused on increasing the speed and reducing the area of digital systems. However, the evolution of portable systems and advanced Deep Sub-Micron fabrication technologies have brought power dissipation as another critical design factor. Low power design reduces cooling cost and increases reliability especially for high density systems. Moreover, it reduces the ...
متن کاملTechnology Mapping for Hot-Carrier Reliability Enhancement
As semiconductor devices enter the deep sub-micron era, reliability has become a major issue and challenge in VLSI design. Among all the failure mechanisms, hot-carrier eeect is one of those which have the most signiicant impact on the long-term reliability of high-density VLSI circuits. In this paper, we address the problem of minimizing hot-carrier eeect during the technology mapping stage of...
متن کاملImprovement of a Nano-scale Silicon on Insulator Field Effect Transistor Performance using Electrode, Doping and Buried Oxide Engineering
In this work, a novel Silicon on Insulator (SOI) MOSFET is proposed and investigated. The drain and source electrode structures are optimized to enhance ON-current while global device temperature and hot carrier injection are decreased. In addition, to create an effective heat passage from channel to outside of the device, a silicon region has embedded in the buried oxide. In order to reduce th...
متن کاملSymmetrical, Low-Power, and High-Speed 1-Bit Full Adder Cells Using 32nm Carbon Nanotube Field-effect Transistors Technology (TECHNICAL NOTE)
Carbon nanotube field-effect transistors (CNFETs) are a promising candidate to replace conventional metal oxide field-effect transistors (MOSFETs) in the time to come. They have considerable characteristics such as low power consumption and high switching speed. Full adder cell is the main part of the most digital systems as it is building block of subtracter, multiplier, compressor, and other ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002